
彰化縣立彰化藝術高中暨田中高中100學年度教師甄試數學科試題

- 一、單選題(每題5分,共60分)
- ()1. 設 p,q R 且 p > 0,q > 0 ,若 $\log_9 p = \log_{12} q = \log_{16} (p+q)$,則 $\frac{q}{p}$ 之值介於下列哪一個區間?
 - (A) $(1, \frac{3}{2})$ (B) $(\frac{3}{2}, 2)$ (C) $(2, \frac{5}{2})$ (D) $(\frac{5}{2}, 3)$ (E) $(3, \frac{7}{2})$
- ()2.將1、2、3、…、9此9個正整數隨機填入3x3之棋盤形9個格子中,每一格填一個數字,且每個數字只填一次,求使每一行,每一列(不含對角線)之數字和皆為奇數之機率為何?
 - (A) $\frac{1}{10}$ (B) $\frac{1}{11}$ (C) $\frac{1}{12}$ (D) $\frac{1}{13}$ (E) $\frac{1}{14}$
- ()3. 設複數 z 滿足 |z|=2 ,若 $|z+\frac{2}{z}-1|=n$,且n 為整數,則n 所有可能值的和為
 - (A) 6 (B) 10 (C) 15 (D) 21 (E) 28
- ()4.袋中有 15 個球, 其中有紅球 5 個,編號 1 至 5 , 白球 10 個, 編號 1 至 10 ,任意取雨球,試求球號之和小於 7 的機率 (A) $\frac{1}{7}$ (B) $\frac{23}{105}$ (C) $\frac{5}{21}$ (D) $\frac{9}{35}$ (E) $\frac{29}{105}$
- ()5.在xy 平面上,有多少條直線與x 軸的截距為正質數,與y 軸的截距為正整數且通過點(4,3) (A) 0 (B) 1 (C) 2 (D) 3 (E)4
- ()6.由1至99的九十九個整數中,任取三個相異數,則此三數恰成等差數列的取法有多少種? (A)1001 (B)1024 (C)1600 (D)1960 (E)2401
- ()7.設 $a \cdot b$ 為實數 , 方程式 $x^2 + 2ax + b = 0$ 沒有實根 , 且各根之絕對值均為 1 , 則 b 之值為何? (A)1 (B) $\sqrt{3}$ (C)2 (D) $\sqrt{5}$ (E) $\sqrt{6}$
- ()9. 空間中有三個點 A(-1,2,5) , B(-2,1,2) , P(0,b,c) ,則 $\overline{PA}^2 + \overline{PB}^2$ 的最小值為
 - (A) 6 (B)7 (C) 8 (D) 9 (E)10
- ()10. 函數 f 的圖形如下所示,則方程式 f(f(x)) = 6 的實數解有幾個f(A) = 1 (B) f(B) = 1 (C) f(B) = 1 (E) f(B) = 1

- ()11. 自圓 $C: x^2 + y^2 = 4$ 上取二點 $A \cdot B$,使此二點均在 x 軸上方,且折回劣弧 AB 恰與 x 軸切於點(1,0),求 \overline{AB} 方程式為何?(A)2x-4y-5=0 (B)3x-4y+5=0 (C)2x+3y-5=0 (D)2x+3y+5=0 (E)2x+4y-5=0
- ()12. 設 a b c 為 0 到 9 的整數, a b c 不可同時為 0 且不可同時為 9 。若將循環小數 0.abc 化為最簡分數時,則分母有多少種情形?
 - (A)7 (B)8 (C)9 (D)10 (E)11
- 二、計算題(每個答案5分,共40分)
- 1. 已知P為正方形ABCD內部的一點,若 $\overline{AP} = 7$, $\overline{BP} = 5$, $\overline{CP} = 1$,試求正方形ABCD的面積。
- 2. 連續擲出一個公正的正六面體骰子n次,將前n次出現的點數依序寫在小數點的後面,得到一個實數 a_n ,例 $a_1 = 4$,

 $a_2 = 0.43$, $a_3 = 0.435$, ... , 對於實數 k , 若符號 $p_n(k)$ 代表「 a_n k 的機率」, 試求:

$$(1) p_{2011}(\frac{1}{7})$$

$$(2) \lim_{n \neq \infty} p_n(\frac{41}{333})$$

- 3. 若 $\{x | 1 \top \sum_{k=1}^{10} \frac{k}{x-k} = 2\}$ 的解集合為若干區間的聯集,求區間的總長度
- 4. 設 a 、 b 、 c 、 d 、 e 、 f 均為實數且 $a^2 + b^2 + c^2 = 16$, $d^2 + e^2 + f^2 = 6$,則行列式 $\begin{vmatrix} a & b & c \\ d & e & f \\ 1 & 2 & 1 \end{vmatrix}$ 的最大值為_____
- 5. 已知可微分函數 f(x)滿足 $f(x) = 2f(2-x) x^2 4x + 2$,若 y = f(x)的圖形在點(0, f(0))處的切線方程式為L,求:

$$(1) f(0) = \underline{\qquad} (2) f'(0) = \underline{\qquad}$$

