有 34 筆資料符合您搜尋的條件
Re: 107 嘉義高中
請想問第二部分 微積分 第一題
直覺是用黎曼積分...但是一直配不出來 謝謝...
直覺是用黎曼積分...但是一直配不出來 謝謝...
- 2017年 9月 30日, 10:10
- 版面: 國中教甄討論區
- 主題: 106新北市國中數學科試題與答案
- 回覆: 29
- 觀看: 83452
Re: 102師大附中
prayer 寫:想請教第三部分第二題的證明,感謝。^^
請參考附件...
Re: 103 北一女二招
大大真有耐心....跟我的做法類似 ...thepiano 寫:計算一(2)
也順便,請參考附件
我比較好奇的是...考試中 這種作法 不會想放棄嗎....
我以前的經驗是 像這種過程 應該有某些性質可以讓我們秒殺...
只是我們不知道....
當然也有可能是沒有這樣的性質
或是就要看出這一題目的老師是要側驗受試者的數學知識 還是計算能力....
難道...暴力也是一種美學....
Re: 103 北一女二招
小弟提供計算一第一小題 暴力作法thepiano 寫:請參考附件
小弟嚴重懷疑 應該有漂亮的幾何觀點
才疏學淺 實在看不出來....
因此第二小題 只好先放棄...
Re: 103 基隆國中
第 36 題 k 和它最大奇因數約分後,一定只剩下 1/(2^a) 這種型式,這裡的 a 是 0 (k 為正奇數時) 或正整數 (k 為正偶數時) 1 ~ 200 的數中 (1) a = 0,有 100 個數 (2) a = 1,有 [200/2] - [200/2^2] = 50 個 (3) a = 2,有 [200/2^2] - [200/2^3] = 25 個 (4) a = 3,有 [200/2^3] - [200/2^4] = 13 個 (5) a = 4,有 [200/2^4] - [200/2^5] = 6 個 (6) a = 5,有 [200/2^5] - [200/2^6]...
Re: 103 基隆國中
想請問各位先進....第36題有沒有比較快的作法呢?????..
我用暴力做法也花很長一段時間才完成
考試時 應該會直接放棄吧 感恩
我用暴力做法也花很長一段時間才完成
考試時 應該會直接放棄吧 感恩
Re: 103 基隆國中
小弟提供37作法 若有誤 請指教....感恩thepiano 寫:#37
考試時,用30,60,90的直角三角形去找答案較快
#38
每個面的4個頂點可決定4個直角三角形
每條邊和它相鄰最遠的兩個頂點可決定2個直角三角形
共4*6+2*12=48個
Re: 103 基隆國中
ellipse 寫:#5Superconan 寫:請教 5 , 6 , 7 , 17 , 18
找到的例子是
f(x)=2x^2-1 ,g(x)=-x^2+2
這樣x在[-1,1]區間 ,g(x)的最大值=2
f(x)=-2x^2+1 ,g(x)=x^2-2
這樣x在[-1,1]區間 ,g(x)的最小值=-2
可是要證明還要想看看~
小弟提供一個証法...看看是否有誤....感恩