111 臺北市高中聯招

版主: thepiano

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

111 臺北市高中聯招

文章 thepiano »

請參考附件

多選第 2 題的選項 (A) 也給分
附加檔案
111 臺北市高中聯招_答案.pdf
(173.81 KiB) 已下載 278 次
111 臺北市高中聯招.pdf
(377.2 KiB) 已下載 288 次

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 111 臺北市高中聯招

文章 thepiano »

第 8 題
xy = 1
(x - 1)^2 + (y - 1)^2 = 1

令 x = m + 1,y = n + 1
mn + m + n = 0
(m + n)^2 - 2mn = 1

m + n = - 1 + √2
mn = 1 - √2

m = [√2 - 1 + √(2√2 - 1)] / 2 or [√2 - 1 - √(2√2 - 1)] / 2

A(a,1/a)、B(b,1/b)
a = [√2 - 1 - √(2√2 - 1)] / 2 + 1 = [√2 + 1 - √(2√2 - 1)] / 2
b = [√2 - 1 + √(2√2 - 1)] / 2 + 1 = [√2 + 1 + √(2√2 - 1)] / 2
(a - b)^2 = 2√2 - 1
(ab)^2 = 1

AB^2 = (a - b)^2 + (1/a - 1/b)^2 = (a - b)^2 + [(b - a)^2 / (ab)^2] = 4√2 - 2

cos∠ACB = [1^2 + 1^2 - (4√2 - 2)] / (2 * 1 * 1) = 2 - 2√2

lovejade
文章: 41
註冊時間: 2021年 4月 21日, 17:30

Re: 111 臺北市高中聯招

文章 lovejade »

想請問單選第1題,謝謝

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 111 臺北市高中聯招

文章 thepiano »

選擇第 1 題
把此數列放在數線上

|a_(k + 1) - a_k| = 1
表示從 a_k 到 a_(k + 1) 不是往右就是往左移動 1 單位長

a_1 ~ a_21 移動 20 次,共移動了 15 - 1 = 14 個單位長
表示右移 17 次,左移 3 次

所求 = 20! / (17!3!)

lovejade
文章: 41
註冊時間: 2021年 4月 21日, 17:30

Re: 111 臺北市高中聯招

文章 lovejade »

謝謝老師!

huanghs
文章: 72
註冊時間: 2018年 5月 9日, 14:40

Re: 111 臺北市高中聯招

文章 huanghs »

請問老師計算第二題要怎麼做呢?

lovejade
文章: 41
註冊時間: 2021年 4月 21日, 17:30

Re: 111 臺北市高中聯招

文章 lovejade »

想請問選擇第2題的D、E選項應該怎看才對呢?!
還有選擇第4題的A選項,謝謝

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 111 臺北市高中聯招

文章 thepiano »

選擇第 2 題
(D)
f(x) = ax(x - x_1)(x - x_2)
g(x) = b(x - x_3)(x - x_4)(x - x_5)

f(g(x)) = ag(x)[g(x) - x_1][(g(x) - x_2] = 0
看 y = g(x) 的圖可知
g(x) = 0 有 2 個實根
g(x) = x_1 (在 1 和 2 之間) 有 2 個實根
g(x) = x_2 (在 -1 和 -2 之間) 有 2 個實根
共 6 個實根

(E)
g(f(x)) = b[f(x) - x_3][f(x) - x_4][f(x) - x_5] = 0
看 y = f(x) 的圖可知
f(x) = x_3 (在 1 附近,但比 1 小) 有 2 個實根
f(x) = x_4 (在 -1 和 -2 之間) 有 1 個實根
f(x) = x_5 (比 2 大或比 -2 小) 有 1 個實根
共 4 個實根



選擇第 4 題
(A) 3向量 a + 4向量 b + 5向量 c = 0 向量
把圖畫出來
可知 向量 a 和 向量 b 所張出的平行四邊形面積是 3向量 a 和 4向量 b 所張出的平行四邊形面積的 1/12
向量 a 和 向量 c 所張出的平行四邊形面積是 3向量 a 和 5向量 c 所張出的平行四邊形面積的 1/15
而 3向量 a 和 4向量 b 所張出的平行四邊形面積 = 3向量 a 和 5向量 c 所張出的平行四邊形面積
所以選項中的 4/5 要改成 5/4 才對

lovejade
文章: 41
註冊時間: 2021年 4月 21日, 17:30

Re: 111 臺北市高中聯招

文章 lovejade »

想請問填充第6題分子的部分,想法是什麼呢?謝謝
本來想法是紅球先放,黑球插空格,白球再插空格,但好像會重複算到?

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 111 臺北市高中聯招

文章 thepiano »

3 顆白球都不相鄰 - (2 顆黑球相鄰 且 3 顆白球都不相鄰)

[6!/(4!2!)] * C(7,3) - (5!/4!) * C(6,3)

回覆文章

回到「高中職教甄討論區」