以下題目為PTT數學板demon網友提供......
我懶得重打一次了.....
稍作整理大家應該看得懂吧.....
99東山高中
版主: thepiano
Re: 99東山高中
OG=(1/3)OA+(1/3)OB+(1/3)OC=(2/3)OM+(1/3)OB+(1/3)OC
OH=tOG=(2t/3)OM+(t/3)OB+(t/3)OC
由(1)可知(2t/3)+(t/3)+(t/3)=1
則t=3/4
帶入原式OH=(3/4)OG==(1/4)OA+(1/4)OB+(1/4)OC
即(α,β,γ)=(1/4,1/4,1/4)
OH=tOG=(2t/3)OM+(t/3)OB+(t/3)OC
由(1)可知(2t/3)+(t/3)+(t/3)=1
則t=3/4
帶入原式OH=(3/4)OG==(1/4)OA+(1/4)OB+(1/4)OC
即(α,β,γ)=(1/4,1/4,1/4)
Re: 99東山高中
考慮 [a + (2/a)] / 2 ≧ √2 (a > 0)
a_0 = 1
a_1 = [a_0 + (2/a_0)] / 2 = 3/2
a_2 = [a_1 + (2/a_1)] / 2 = 17/12 = 1.416...
a_3 = [a_2 + (2/a_2)] / 2 = 577/408 = 1.414...
:
:
a_n = {a_(n - 1) + [2/a_(n - 1)]} / 2
a_0 = 1
a_1 = [a_0 + (2/a_0)] / 2 = 3/2
a_2 = [a_1 + (2/a_1)] / 2 = 17/12 = 1.416...
a_3 = [a_2 + (2/a_2)] / 2 = 577/408 = 1.414...
:
:
a_n = {a_(n - 1) + [2/a_(n - 1)]} / 2
Re: 99東山高中
thepiano 寫:考慮 [a + (2/a)] / 2 ≧ √2 (a > 0)
a_0 = 1
a_1 = [a_0 + (2/a_0)] / 2 = 3/2
a_2 = [a_1 + (2/a_1)] / 2 = 17/12 = 1.416...
a_3 = [a_2 + (2/a_2)] / 2 = 577/408 = 1.414...
:
:
a_n = {a_(n - 1) + [2/a_(n - 1)]} / 2
鋼琴兄這題解得真是漂亮......
不過個人覺得不妨假設"a_0 = 2 "
(ps:後面的結果都一樣)
這樣會更好說明{a_n}是遞減且有下界
所以極限值會等於√2
Re: 99東山高中
要看新訊息,畫面左上角有以下這一排 ...
會員控制台 (UCP) (1 個新訊息) • 檢視您的文章
按下 "1 個新訊息" 那裡
會員控制台 (UCP) (1 個新訊息) • 檢視您的文章
按下 "1 個新訊息" 那裡