1 頁 (共 1 頁)

考古題嗎?這裡有啦!

發表於 : 2010年 5月 6日, 17:09
八神庵
烤季....考季快到了
大家都一起來練習一下吧
附檔是小弟我的搜尋考古題集
先感謝各位不吝指教.....

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 7日, 09:46
thepiano
先做幾題

第 2 題
以下網址可畫圖
http://www.quickmath.com/webMathematica ... s&s3=basic
x 用 -2 to 2,y 用 0 to 10 較容易看出圖的樣子


第 3 題
令直線 L 之方程式為 y = m(x - 1) + 2
4 - x^2 = m(x - 1) + 2
x^2 + mx - (m + 2) = 0
再令 Γ 與 L 之交點為 B(t,4 - t^2),C(s,4 - s^2),t > s
s + t = -m,st = -(m + 2)
s - t = - √(m^2 + 4m + 8)

Γ 與 L 圍成之面積
= ∫[4 - x^2 - m(x - 1) - 2]dx (從 s 積到 t)
= ∫[-x^2 - mx + (m + 2)]dx (從 s 積到 t)
= (s^3 - t^3) / 3 + (m/2)(s^2 - t^2) - (m + 2)(s - t)
= (s - t){[(s - t)^2 + 3st] / 3 + (m/2)(s + t) - (m + 2)}
= (m^2 + 4m + 8)^(3/2) / 6
......


第 6 題
令切線之方程式為 y = m(x - 3/2) + 3
-x^2 + 4x - 3 = m(x - 3/2) + 3
x^2 + (m - 4)x - (3m/2 - 6) = 0
(m - 4)^2 + 4(3m/2 - 6) = 0
m = 4 or -2

兩切線為 y = 4x - 3 與 y = -2x + 6
兩切點為 Q(0,-3) 與 R(3,0)
直線 QR 之方程式為 y = x - 3

所求 = △PQR - ∫[-x^2 + 4x - 3 - (x - 3)]dx (從 0 積到 3)
......


第 9 題
作 F 關於 y = x 之對稱點 F'(3,2)
所求 = PF' 之最小值
......


第 10 題
α - γ = √3i(β - γ) + 2β - 2γ = (2 + √3i)(β - γ)
α - β = √3i(β - γ) + β - γ = (1 + √3i)(β - γ)
......


第 11 題
a_1 = 6
n ≧ 2
a_n = S_n - S_(n - 1) = (2n + 3) * 2^(n - 1)

所求 = 5/6 + Σ[1 / 2^(n - 1)] (n = 2 到 ∞) = 11/6


第 14 題
(1)
利用
cosB = BE / BD = (AB^2 + BC^2 - AC^2) / (2 * AB * BC)
cosC = CF / CD = (AC^2 + BC^2 - AB^2) / (2 * AC * BC)
可求出 c
△ABC = (1/2) * 4 * c * sinB

(2) 方法跟 (1) 差不多


第 15 題
x > 0,y > 0
題目即是求 log(x^3y^2) / log2 之最小值

1/(3x) + 1/(3x) + 1/(3x) + 2/(27y) + 2/(27y) ≧ 5[4/(3^9 * x^3y^2)]^(1/5)
x^3y^2 ≧ 1/(2^8 * 3^4)

所求 = -8 - (4log3/log2)

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 8日, 15:00
八神庵
piano桑....
最後一題那個對數啊
我算法與你相同,但答案卻沒有對數(公佈為-15)
不知道是題目有問題,還是必須另有算法? :embs:

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 8日, 16:29
thepiano
應該是您題目打錯,如果題目沒錯,小弟很確定 x = 1/4,y = 1/18 可取到最小值 -8 - (4log3/log2),約 -14.33985

小弟手上沒有這份題目,能否把原始檔貼上來?

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 8日, 18:04
HB13256
有些題目是同學解的

另外15題鋼琴大算的沒錯 那一題選擇題當年有討論過應該是出錯

!.doc
(137.5 KiB) 已下載 1422 次

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 9日, 01:28
HB13256
12.
先考慮BC點數和

點數和 2 3 4 5 6
機率 2/36 6/36 12/36 10/36 6/36

再將A考慮進來

ABC點數和3 2/36*1/6
4 (2/36+6/36)*1/6
5 (2/36+6/36+ 12/36)*1/6
6 (2/36+6/36+ 12/36+10/36 )*1/6
7 (2/36+6/36+ 12/36+10/36+6/36)*1/6
8 (2/36+6/36+ 12/36+10/36+6/36)*1/6
9 (6/36+ 12/36+10/36+6/36)*1/6
...
當點數和為7,8時有最大的機率

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 9日, 15:57
thepiano
第 13 題
畫圖看交點,有 7 個實根

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 14日, 00:25
八神庵
皮大
可是我怎麼畫都只有6點
有沒有圖可供參考??

Re: 考古題嗎?這裡有啦!

發表於 : 2010年 5月 14日, 08:56
thepiano