114 臺南女中
版主: thepiano
Re: 114 臺南女中
第 4 題
以下均為向量
AD = AB + BC + CD
|AD|^2 = |AB|^2 + |BC|^2 + |CD|^2 + 2(AB˙BC + BC˙CD + CD˙AB)
5^2 = 2^2 + 3^2 + 4^2 + 2(AB˙BC + BC˙CD + CD˙AB)
AB˙BC + BC˙CD + CD˙AB = -2
AC˙BD = (AB + BC)(BC + CD) = AB˙BC + AB˙CD + |BC|^2 + BC˙CD = -2 + 9 = 7
以下均為向量
AD = AB + BC + CD
|AD|^2 = |AB|^2 + |BC|^2 + |CD|^2 + 2(AB˙BC + BC˙CD + CD˙AB)
5^2 = 2^2 + 3^2 + 4^2 + 2(AB˙BC + BC˙CD + CD˙AB)
AB˙BC + BC˙CD + CD˙AB = -2
AC˙BD = (AB + BC)(BC + CD) = AB˙BC + AB˙CD + |BC|^2 + BC˙CD = -2 + 9 = 7
Re: 114 臺南女中
第 2 題
g(x) = f(x) - x^3 = ax^2 + bx + c
g(a) = g(b) = 0
a、b 是 g(x) = 0 之二根
a + b = -b/a,ab = c/a
c = a^2b = a^2 * [-a^2/(a + 1)] = -a^4/(a + 1) = (-a^3 + a^2 - a + 1) - [1/(a + 1)] 為整數
a = -2,c = 16,b = 4
a + b + c = 18
g(x) = f(x) - x^3 = ax^2 + bx + c
g(a) = g(b) = 0
a、b 是 g(x) = 0 之二根
a + b = -b/a,ab = c/a
c = a^2b = a^2 * [-a^2/(a + 1)] = -a^4/(a + 1) = (-a^3 + a^2 - a + 1) - [1/(a + 1)] 為整數
a = -2,c = 16,b = 4
a + b + c = 18
Re: 114 臺南女中
填充第 12 題
f(x) = √3sin(kx) + cos(kx) = 2sin(kx + π/6)
(-1/4)π ≦ x ≦ (1/3)π
(-k/4)π ≦ kx ≦ (k/3)π
[(-3k + 2)/12]π ≦ kx + π/6 ≦ [(2k + 1)/6]π
當 [(-3k + 2)/12]π = (-1/2)π 時,是圖形最低點
當 [(2k + 1)/6]π = (1/2)π 時,是圖形最高點
分別往左、右延伸
故 (-3/2)π < [(-3k + 2)/12]π ≦ -(1/2)π 且 (1/2)π ≦ [(2k + 1)/6]π < (3/2)π 時
其圖形恰有一個最高點和一個最低點
8/3 ≦ k <20/3 且 1 ≦ k <4
8/3 ≦ k < 4
f(x) = √3sin(kx) + cos(kx) = 2sin(kx + π/6)
(-1/4)π ≦ x ≦ (1/3)π
(-k/4)π ≦ kx ≦ (k/3)π
[(-3k + 2)/12]π ≦ kx + π/6 ≦ [(2k + 1)/6]π
當 [(-3k + 2)/12]π = (-1/2)π 時,是圖形最低點
當 [(2k + 1)/6]π = (1/2)π 時,是圖形最高點
分別往左、右延伸
故 (-3/2)π < [(-3k + 2)/12]π ≦ -(1/2)π 且 (1/2)π ≦ [(2k + 1)/6]π < (3/2)π 時
其圖形恰有一個最高點和一個最低點
8/3 ≦ k <20/3 且 1 ≦ k <4
8/3 ≦ k < 4
Re: 114 臺南女中
計算第 4 題
易知 P_1(a,c),P_2(a^2 + bc,ac + cd)
(1) c = 0
OP_1 = 1,a^2 + c^2 = 1,a = ±1
(i) a = 1,P_n = (1,0),OP_n = 1
(ii) a = -1,P_n = (±1,0),OP_n = 1
(2) c ≠ 0
det(A) = 1,ad - bc = 1
OP_1 = 1,a^2 + c^2 = 1
OP_2 = 1,(a^2 + bc)^2 + (ac + cd)^2 = 1
a^4 + 2a^2bc + b^2c^2 + a^2c^2 + 2ac^2d + c^2d^2 = 1
a^4 + 2a^2(ad - 1) + (ad - 1)^2 + a^2(1 - a^2) + 2ad(1 - a^2) + (1 - a^2)d^2 = 1
d^2 = a^2
(i) d = a,a^2 - bc = 1 = a^2 + c^2,b = -c,矩陣 A 是旋轉矩陣,OP_n = 1
(ii) d = -a,P_1(a,c),P_2(-1,0),P_3(-a,-c),P_4(1,0),P_5(a,c),P_6(-1,0),...,OP_n = 1
易知 P_1(a,c),P_2(a^2 + bc,ac + cd)
(1) c = 0
OP_1 = 1,a^2 + c^2 = 1,a = ±1
(i) a = 1,P_n = (1,0),OP_n = 1
(ii) a = -1,P_n = (±1,0),OP_n = 1
(2) c ≠ 0
det(A) = 1,ad - bc = 1
OP_1 = 1,a^2 + c^2 = 1
OP_2 = 1,(a^2 + bc)^2 + (ac + cd)^2 = 1
a^4 + 2a^2bc + b^2c^2 + a^2c^2 + 2ac^2d + c^2d^2 = 1
a^4 + 2a^2(ad - 1) + (ad - 1)^2 + a^2(1 - a^2) + 2ad(1 - a^2) + (1 - a^2)d^2 = 1
d^2 = a^2
(i) d = a,a^2 - bc = 1 = a^2 + c^2,b = -c,矩陣 A 是旋轉矩陣,OP_n = 1
(ii) d = -a,P_1(a,c),P_2(-1,0),P_3(-a,-c),P_4(1,0),P_5(a,c),P_6(-1,0),...,OP_n = 1