94 曾文家商

版主: thepiano

回覆文章
armopen
文章: 229
註冊時間: 2009年 3月 16日, 11:18

94 曾文家商

文章 armopen »

wall 上有 6 個燈泡,由左至右分別編號為 1 ~ 6 號,擲一個骰子一次,編號與出現點數相同的燈泡就會改變狀態 (所謂改變

狀態是指:由亮變暗,或由暗變亮)。今假設一開始 6 個燈泡都是暗的。若小英擲骰子 5 次後發現恰有一個燈泡還亮著,問共有幾

種擲骰子的情形會得到恰有一個燈泡仍然亮著的結果?

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 94 曾文家商

文章 thepiano »

先假設最後只有 1 號燈泡亮著

(1) 1 點出現 5 次
1 種情形

(2) 1 點出現 3 次,a 點出現 2 次 (a 是 2 ~ 6 其中之一)
[5! / (3!2!)] * C(5,1) = 50 種情形

(3) 1 點出現 1 次,a 點出現 4 次 (a 是 2 ~ 6 其中之一)
(5! / 4!) * C(5,1) = 25 種情形

(4) 1 點出現 1 次,a 點出現 2 次,b 點出現 2 次 (a,b 是 2 ~ 6 其中之一)
[5! / (2!2!)] * C(5,2) = 300 種情形

上面共 376 種情形,再乘以 6 就是答案了!

armopen
文章: 229
註冊時間: 2009年 3月 16日, 11:18

Re: 94 曾文家商

文章 armopen »

謝謝 thepiano 老師的幫忙,很清楚呢!

回覆文章

回到「高中職教甄討論區」