98桃小第41、42題
版主: thepiano
Re: 98桃小第41、42題
第 41 題
tanθ + cotθ = (x^2 + 1) / x = [(3 + √10)^2 + 1] / (3 + √10) = 2√10
令 cotθ = t > 1
1/t + t = 2√10
t^2 - 2√10t + 1 = 0
代公式可求出 t = 3 + √10 or -3 + √10(不合)
第 42 題
4x^2 + 4x - 3 = 0
(2x - 1)(2x + 3) = 0
x = 1/2 or -3/2
故 sinθ = 1/2
cos2θ = 1 - 2(sinθ)^2 = 1/2
tanθ + cotθ = (x^2 + 1) / x = [(3 + √10)^2 + 1] / (3 + √10) = 2√10
令 cotθ = t > 1
1/t + t = 2√10
t^2 - 2√10t + 1 = 0
代公式可求出 t = 3 + √10 or -3 + √10(不合)
第 42 題
4x^2 + 4x - 3 = 0
(2x - 1)(2x + 3) = 0
x = 1/2 or -3/2
故 sinθ = 1/2
cos2θ = 1 - 2(sinθ)^2 = 1/2
Re: 98桃小第41、42題
第 36 題
用等比級數公式可求出
N = 2^50 - 1
只看 2^50 是幾位數即可
取對數
log(2^50) = 50log2 = 50 * 0.301 = 15.05
故 2^50 是 16 位數
第 39 題
(sin15 + icos15)^10
= (cos75 + isin75)^10
= [cos(5π/12) + isin(5π/12)]^10
= cos(50π/12) + isin(50π/12)
= cos(2π/12) + isin(2π/12)
= √3/2 + (1/2)i
第 43 題
連 OP
∠APO = 90 度
∠AOP = 50 度
∠APB = (1/2)弧 PB = (1/2) * 50 度 = 25 度
第 46 題
9^2 + b^2 = 7^2 + a^2 = AC^2
a^2 - b^2 = 9^2 - 7^2
(a + b)(a - b) = 32
用等比級數公式可求出
N = 2^50 - 1
只看 2^50 是幾位數即可
取對數
log(2^50) = 50log2 = 50 * 0.301 = 15.05
故 2^50 是 16 位數
第 39 題
(sin15 + icos15)^10
= (cos75 + isin75)^10
= [cos(5π/12) + isin(5π/12)]^10
= cos(50π/12) + isin(50π/12)
= cos(2π/12) + isin(2π/12)
= √3/2 + (1/2)i
第 43 題
連 OP
∠APO = 90 度
∠AOP = 50 度
∠APB = (1/2)弧 PB = (1/2) * 50 度 = 25 度
第 46 題
9^2 + b^2 = 7^2 + a^2 = AC^2
a^2 - b^2 = 9^2 - 7^2
(a + b)(a - b) = 32
Re: 98桃小第41、42題
cotθ = t > 1hatagirl 寫:第41題
為什麼
-3 + √10(不合)?
但 -3 + √10 < 1