104新北市國中數學
版主: thepiano
Re: 104新北市國中數學
第 1 題
以下度省略
tan(20 + 25) = (tan20 + tan25)/(1 - tan20tan25)
1 - tan20tan25 = tan20 + tan25
tan20 + tan25 + tan20tan25 = 1
(1 + tan15)(1 + tan20)(1 + tan25)
= (1 + 2 - √3)(1 + tan20 + tan25 + tan20tan25)
= (3 - √3) * 2
= 6 - 2 √3
第 6 題
a + a + b = 10
b = 10 - 2a
√[5(5 - a)(5 - a)(5 - 10 + 2a)] = 2√5
(5 - a)(5 - a)(2a - 5) = 4
2a^3 - 25a^2 + 100a - 129 = 0
(a - 3)(2a^2 - 19a + 43) = 0
a = 3 or (19 - √17)/4 or (19 + √17)/4 (不合,因 b < 0)
b = 4 or (1 + √17)/2
第 14 題
f(x) = ax^3 + bx^2 + cx
f'(x) = 3ax^2 + 2bx + c
判別式 4b^2 - 12ac > 0 即 b^2 - 3ac > 0 時,f(x) 有極值,此時 f(x) = 0 有三實根
由於三次實係數方程式不是三實根(包含重根)就是一實根
故 b^2 - 3ac = 0 時,f(x) = 0 僅有一實根
第 18 題
x = (1 + √2014)/2
(2x - 1)^2 = 2014
4x^2 - 4x = 2013
4x^3 = 4x^2 + 2013x
(2x^2 - 2x - 1006)^2015 * (4x^3 - 2017x - 2015)^2014
= {[(2x^2 - 2x - 1006)(4x^3 - 2017x - 2015)]^2014 * (4x^2 - 4x - 2012)}/2
= [(2013/2 - 1006)(4x^2 + 2013x - 2017x - 2015]^2014 / 2
= [(1/2)(4x^2 - 4x - 2015)]^2014 / 2
= 1/2
第 35 題
A = a(1 + r + r^2)
B = a(1 + r^2 + r^4)
(1 + r + r^2) / (1 + r^2 + r^4) = 4 / 19
1 / (1 - r + r^2) = 4/19
4r^2 - 4r - 15 = 0
r = 5/2 or -3/2 (不合)
第 39 題
見圖
設圓 D 半徑 x
AE = 12,AC = 12 + 3 = 15,CE = 9
DE = 9 - 3 - x = 6 - x
AD = 12 + x
(6 - x)^2 + 12^2 = (12 + x)^2
x = 1
以下度省略
tan(20 + 25) = (tan20 + tan25)/(1 - tan20tan25)
1 - tan20tan25 = tan20 + tan25
tan20 + tan25 + tan20tan25 = 1
(1 + tan15)(1 + tan20)(1 + tan25)
= (1 + 2 - √3)(1 + tan20 + tan25 + tan20tan25)
= (3 - √3) * 2
= 6 - 2 √3
第 6 題
a + a + b = 10
b = 10 - 2a
√[5(5 - a)(5 - a)(5 - 10 + 2a)] = 2√5
(5 - a)(5 - a)(2a - 5) = 4
2a^3 - 25a^2 + 100a - 129 = 0
(a - 3)(2a^2 - 19a + 43) = 0
a = 3 or (19 - √17)/4 or (19 + √17)/4 (不合,因 b < 0)
b = 4 or (1 + √17)/2
第 14 題
f(x) = ax^3 + bx^2 + cx
f'(x) = 3ax^2 + 2bx + c
判別式 4b^2 - 12ac > 0 即 b^2 - 3ac > 0 時,f(x) 有極值,此時 f(x) = 0 有三實根
由於三次實係數方程式不是三實根(包含重根)就是一實根
故 b^2 - 3ac = 0 時,f(x) = 0 僅有一實根
第 18 題
x = (1 + √2014)/2
(2x - 1)^2 = 2014
4x^2 - 4x = 2013
4x^3 = 4x^2 + 2013x
(2x^2 - 2x - 1006)^2015 * (4x^3 - 2017x - 2015)^2014
= {[(2x^2 - 2x - 1006)(4x^3 - 2017x - 2015)]^2014 * (4x^2 - 4x - 2012)}/2
= [(2013/2 - 1006)(4x^2 + 2013x - 2017x - 2015]^2014 / 2
= [(1/2)(4x^2 - 4x - 2015)]^2014 / 2
= 1/2
第 35 題
A = a(1 + r + r^2)
B = a(1 + r^2 + r^4)
(1 + r + r^2) / (1 + r^2 + r^4) = 4 / 19
1 / (1 - r + r^2) = 4/19
4r^2 - 4r - 15 = 0
r = 5/2 or -3/2 (不合)
第 39 題
見圖
設圓 D 半徑 x
AE = 12,AC = 12 + 3 = 15,CE = 9
DE = 9 - 3 - x = 6 - x
AD = 12 + x
(6 - x)^2 + 12^2 = (12 + x)^2
x = 1
- 附加檔案
-
- 20150620.jpg (19.42 KiB) 已瀏覽 25671 次
Re: 104新北市國中數學
第 19 題
ab + (a + b) = 17
ab(a + b) = 66
令 ab = x,a + b = 17 - x
x(17 - x) = 66
x = 6 或 11
(1) ab = 6,a + b = 11
a 和 b 是 x^2 - 11x + 6 = 0 的兩實根
(2) ab = 11,a + b = 6
a 和 b 是 x^2 - 6x + 11 = 0 的兩虛根,不合題意
第 20 題
令 A(a,0)、B(a,b)、C(0,b)、D(a,b/2)
雙曲線過 D,a(b/2)= k
xy = ab/2
當 y = b,x = a/2,故雙曲線與 BC 交於 E(a/2,b)
ODBE = 2△BEO = ab/2 = 2
k = ab/2 = 2
第 23 題
令 A(a,-a)、B(b,b)、C(c,2c + p)
則
c - a = 7
2c + p + a = -6
c - b = 2
2c + p - b = -7
可解出 a = -2,b = 3,c = 5,p = -14
第 26 題
f(1) = 1 / (1 + a * 3^b) = 3/4
a * 3^b = 1/3
易知 b 是負整數,a 是正整數
3^b < 1
(3^b)^x 在 [0,1] 遞減
1 + a * (3^b)^x 在 [0,1] 遞減
f(x) = 1/[1 + a * (3^b)^x] 在 [0,1] 遞增
f(0) = 1/(1 + a) = 1/2
a = 1,b = -1
f(x) = 1/[1 + 3^(-x)]
f(3) = 27/28
ab + (a + b) = 17
ab(a + b) = 66
令 ab = x,a + b = 17 - x
x(17 - x) = 66
x = 6 或 11
(1) ab = 6,a + b = 11
a 和 b 是 x^2 - 11x + 6 = 0 的兩實根
(2) ab = 11,a + b = 6
a 和 b 是 x^2 - 6x + 11 = 0 的兩虛根,不合題意
第 20 題
令 A(a,0)、B(a,b)、C(0,b)、D(a,b/2)
雙曲線過 D,a(b/2)= k
xy = ab/2
當 y = b,x = a/2,故雙曲線與 BC 交於 E(a/2,b)
ODBE = 2△BEO = ab/2 = 2
k = ab/2 = 2
第 23 題
令 A(a,-a)、B(b,b)、C(c,2c + p)
則
c - a = 7
2c + p + a = -6
c - b = 2
2c + p - b = -7
可解出 a = -2,b = 3,c = 5,p = -14
第 26 題
f(1) = 1 / (1 + a * 3^b) = 3/4
a * 3^b = 1/3
易知 b 是負整數,a 是正整數
3^b < 1
(3^b)^x 在 [0,1] 遞減
1 + a * (3^b)^x 在 [0,1] 遞減
f(x) = 1/[1 + a * (3^b)^x] 在 [0,1] 遞增
f(0) = 1/(1 + a) = 1/2
a = 1,b = -1
f(x) = 1/[1 + 3^(-x)]
f(3) = 27/28
Re: 104新北市國中數學
感謝老師的回答~~3QQ~~不好意思~另外再請教27~28~32~33
32. |5/2|/根號(2)<=根號(17-4k/4)這樣算有錯嗎?
32. |5/2|/根號(2)<=根號(17-4k/4)這樣算有錯嗎?