103 南區國中

版主: thepiano

ding0916
文章: 3
註冊時間: 2015年 2月 6日, 23:54

Re: 103 南區國中

文章 ding0916 »

請問#21.29
謝謝

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 103 南區國中

文章 thepiano »

第 21 題

103x + 100y - 600 = 0 和 103x - 100y + 500 = 0 交於 A 點
103x + 100y - 600 = 0 和 y - 1 = 0 交於 B 點
103x - 100y + 500 = 0 和 y - 1 = 0 交於 C 點

103x + 100y - 600 = 0 的斜率為 -103/100,比 -1 小一點點
103x - 100y + 500 = 0 的斜率為 103/100,比 1 大一點點
由於 y - 1 = 0 為水平線
易知 ∠BAC 為最大角

過 A 可畫出斜率分別是 -1 和 1 的兩互相垂直之直線
然後就知道 ∠BAC 是銳角


第 29 題
Σ[2^(n-1)/5^(n-1)] 是一個首項為 1,公比為 2/5 的無窮等比級數
Σ[3^n/5^(n-1)] 是一個首項為 3,公比為 3/5 的無窮等比級數
Σ[4^(n+1)/5^(n-1)] 是一個首項為 16,公比為 4/5 的無窮等比級數

LATEX
文章: 417
註冊時間: 2013年 7月 21日, 23:35

想請問第八題[謝謝 thepiano老師]

文章 LATEX »

想請問第八題
最後由 LATEX 於 2015年 3月 11日, 20:05 編輯,總共編輯了 5 次。

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 103 南區國中

文章 thepiano »

第 8 題
左下右上斜著看
第一斜列 1
第二斜列 2,3
第三斜列 4,5,6

第 n 斜列的最後一個數是 n(n + 1)/2

n(n + 1)/2 ≦ 95
n(n + 1) ≦ 190
n ≦ 13
第 13 斜列最後一個數字是 13(13 + 1)/2 = 91
故 95 在第 14 斜列的第 4 個數字
他的右方數字是第 15 斜列的第 5 個數字 = 14(14 + 1)/2 + 5 = 110

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 103 南區國中

文章 thepiano »

第 10 題
這有一個公式,其中的 n 是正三角形的邊長
C(n+2,4) * 3
此題的 n = 5


第 13 題
100 / (5 + 1) = 16.6...
故至少要獲得 17 票,才能保證當選

eric6204
文章: 58
註冊時間: 2011年 12月 9日, 15:42

Re: 103 南區國中

文章 eric6204 »

請問41要怎麼算?謝謝~

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 103 南區國中

文章 thepiano »

第 41 題
一人先分一枝,剩下 8 枝再分給四人
所求 = H(4,8) = C(11,8) = 165

eric6204
文章: 58
註冊時間: 2011年 12月 9日, 15:42

Re: 103 南區國中

文章 eric6204 »

OK~謝謝老師~

p26131
文章: 24
註冊時間: 2020年 4月 3日, 16:16

Re: 103 南區國中

文章 p26131 »

想請問第44、50題,然後46題的積分範圍該怎麼找呢?

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 103 南區國中

文章 thepiano »

第 44 題
這是"微積分基本定理"啊


第 46 題
參考以下這篇
http://163.21.31.9/~liao/computer/pcknowledge/Polar.pdf


第 50 題
當 n → ∞,該級數之一般項 2n(6 + n^2)^p 不存在
故該級數發散

回覆文章

回到「國中教甄討論區」