今年第一個公告試題的學校
請參考附件
108 台中二中
版主: thepiano
108 台中二中
- 附加檔案
-
- 108 台中二中_填充題答案.pdf
- (47.53 KiB) 已下載 568 次
-
- 108 台中二中.pdf
- (103.96 KiB) 已下載 593 次
Re: 108 台中二中
計算第 1 題
∠ACD = ∠ABD = 45 度
A、B、C、D 四點共圓
△ADE 和 △BCE 相似
其面積比 = AE^2:BE^2 = (3√5)^2:3^2 = 5:1
△ADE = (1/2) * 3 * 6 = 9
△BCD = 2△BCE = 18/5
∠ACD = ∠ABD = 45 度
A、B、C、D 四點共圓
△ADE 和 △BCE 相似
其面積比 = AE^2:BE^2 = (3√5)^2:3^2 = 5:1
△ADE = (1/2) * 3 * 6 = 9
△BCD = 2△BCE = 18/5
Re: 108 台中二中
填充
第 3 題
老梗題
參考 https://math.pro/db/thread-708-1-1.html
第 8 題
a + b + c = 0
ab + bc + ca = 3
abc = 2
a^3 + 3a = 2
b^3 + 3b = 2
a^3 + 3a - b^3 - 3b = 0
a^2 + ab + b^2 = -3
(a - b)^2 = -3 - 3ab = -3(ab + 1) = -3(2/c + 1) = -3[(c + 2) / c]
同理
(b - c)^2 = -3(bc + 1) = -3[(a + 2) / a]
(c - a)^2 = -3(ca + 1) = -3[(b + 2) / b]
(a - b)^2 + (b - c)^2 + (c - a)^2
= -9 - 3(ab + bc + ca)
= -18
(a - b)^2(b - c)^2 + (b - c)^2(c - a)^2 + (a - b)^2(c - a)^2(a - b)^2
= 9[(ab + 1)(bc + 1) + (bc + 1)(ca + 1) + (ca + 1)(ab + 1)]
= 9(2b + ab + bc + 1 + 2c + bc + ca + 1 + 2a + ca + ab + 1)
= 81
f(x) = x^3 + 3x - 2 = (x - a)(x - b)(x - c)
-f(-2) = (a + 2)(b + 2)(c + 2) = 16
(a - b)^2(b - c)^2(c - a)^2
= -27[(a + 2)(b + 2)(c + 2) / (abc)]
= -216
所求 = x^3 + 18x + 81x + 216
第 3 題
老梗題
參考 https://math.pro/db/thread-708-1-1.html
第 8 題
a + b + c = 0
ab + bc + ca = 3
abc = 2
a^3 + 3a = 2
b^3 + 3b = 2
a^3 + 3a - b^3 - 3b = 0
a^2 + ab + b^2 = -3
(a - b)^2 = -3 - 3ab = -3(ab + 1) = -3(2/c + 1) = -3[(c + 2) / c]
同理
(b - c)^2 = -3(bc + 1) = -3[(a + 2) / a]
(c - a)^2 = -3(ca + 1) = -3[(b + 2) / b]
(a - b)^2 + (b - c)^2 + (c - a)^2
= -9 - 3(ab + bc + ca)
= -18
(a - b)^2(b - c)^2 + (b - c)^2(c - a)^2 + (a - b)^2(c - a)^2(a - b)^2
= 9[(ab + 1)(bc + 1) + (bc + 1)(ca + 1) + (ca + 1)(ab + 1)]
= 9(2b + ab + bc + 1 + 2c + bc + ca + 1 + 2a + ca + ab + 1)
= 81
f(x) = x^3 + 3x - 2 = (x - a)(x - b)(x - c)
-f(-2) = (a + 2)(b + 2)(c + 2) = 16
(a - b)^2(b - c)^2(c - a)^2
= -27[(a + 2)(b + 2)(c + 2) / (abc)]
= -216
所求 = x^3 + 18x + 81x + 216
Re: 108 台中二中
這個常數項的求法太妙了!! 謝謝鋼琴老師thepiano 寫: ↑2019年 4月 27日, 22:32填充
第 3 題
老梗題
參考 https://math.pro/db/thread-708-1-1.html
第 8 題
a + b + c = 0
ab + bc + ca = 3
abc = 2
a^3 + 3a = 2
b^3 + 3b = 2
a^3 + 3a - b^3 - 3b = 0
a^2 + ab + b^2 = -3
(a - b)^2 = -3 - 3ab = -3(ab + 1) = -3(2/c + 1) = -3[(c + 2) / c]
同理
(b - c)^2 = -3(bc + 1) = -3[(a + 2) / a]
(c - a)^2 = -3(ca + 1) = -3[(b + 2) / b]
(a - b)^2 + (b - c)^2 + (c - a)^2
= -9 - 3(ab + bc + ca)
= -18
(a - b)^2(b - c)^2 + (b - c)^2(c - a)^2 + (a - b)^2(c - a)^2(a - b)^2
= 9[(ab + 1)(bc + 1) + (bc + 1)(ca + 1) + (ca + 1)(ab + 1)]
= 9(2b + ab + bc + 1 + 2c + bc + ca + 1 + 2a + ca + ab + 1)
= 81
f(x) = x^3 + 3x - 2 = (x - a)(x - b)(x - c)
-f(-2) = (a + 2)(b + 2)(c + 2) = 16
(a - b)^2(b - c)^2(c - a)^2
= -27[(a + 2)(b + 2)(c + 2) / (abc)]
= -216
所求 = x^3 + 18x + 81x + 216
另外,想請問計算的3、4 要怎麼做呢?
Re: 108 台中二中
計算第 3 題
設 a ≦ b ≦ c
0 ≦ a + b + c ≦ 3
f(x) = (|x - a| + |x - b| + |x - c|) / 3
(1) 最小值出現在 x = b
f(b) = (c - a) / 3 ≦ c / 3 ≦ 1/3 < 1/2
(2) 最大值出現在 x = 0 或 x = 1
f(0) = (a + b + c) / 3
f(1) = 1 - [(a + b + c) / 3]
f(0) 和 f(1) 中,至少有一個 ≧ 1/2
故可以在 [0,1] 上找到 x_0,使 f(x_0) = 1/2
計算第 4 題
參考 pgcci7339 老師的妙解
https://math.pro/db/viewthread.php?tid= ... 1#pid19696
設 a ≦ b ≦ c
0 ≦ a + b + c ≦ 3
f(x) = (|x - a| + |x - b| + |x - c|) / 3
(1) 最小值出現在 x = b
f(b) = (c - a) / 3 ≦ c / 3 ≦ 1/3 < 1/2
(2) 最大值出現在 x = 0 或 x = 1
f(0) = (a + b + c) / 3
f(1) = 1 - [(a + b + c) / 3]
f(0) 和 f(1) 中,至少有一個 ≧ 1/2
故可以在 [0,1] 上找到 x_0,使 f(x_0) = 1/2
計算第 4 題
參考 pgcci7339 老師的妙解
https://math.pro/db/viewthread.php?tid= ... 1#pid19696
Re: 108 台中二中
第 9 題
提示 (x^2 +y^2)[t^2 + (-z)^2] = (xt - yz)^2
提示 (x^2 +y^2)[t^2 + (-z)^2] = (xt - yz)^2