第 5 題
令三根為 p,q,r
p > 2,q > 2,r > 2
a = -(p + q + r)
b = pq + qr + rp
c = -pqr
-(p + q + r) + pq + qr + rp - pqr = -2010
(1 - p)(1 - q)(1 - r) = -2009
1 - p < -1,1 - q < -1,1 - r < -1
(1 - p)(1 - q)(1 - r) = (-7)(-7)(-41)
......
第 6 題
令 x^4 + ax^3 + 2x^2 + bx + 1 = (x^2 + px + 1)(x^2 + qx + 1)
a = p + q
2 = pq + 2,pq = 0
b = p + q
設 x^2 + px + 1 = 0 至少有一實根
p^2 ≧ 4
故 q = 0
a^2 + b^2 = 2p^2 ≧ 8
等號成立於 a = b = ±2
第 10 題
c = -(a + b)
a^2 + b^2 + c^2 = 2(a^2 + ab + b^2)
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = 0
a^3 + b^3 + c^3 = 3abc
a^5 + b^5 + c^5
= a^5 + b^5 - (a + b)^5
= -(5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4)
= -5ab(a^3 + 2a^2b + 2ab^2 + b^3)
= -5ab(a + b)(a^2 + ab + b^2)
= 5abc(a^2 + ab + b^2)
5abc(a^2 + ab + b^2) = 3abc
a^2 + ab + b^2 = 3/5
a^2 + b^2 + c^2 = 2(a^2 + ab + b^2) = 6/5
101 鳳新高中
版主: thepiano
Re: 101 鳳新高中
第 6 題
令 x^4 + ax^3 + 2x^2 + bx + 1 = (x^2 + px + 1)(x^2 + qx + 1)
為何不是(x^2 + px - 1)(x^2 + qx - 1)
令 x^4 + ax^3 + 2x^2 + bx + 1 = (x^2 + px + 1)(x^2 + qx + 1)
為何不是(x^2 + px - 1)(x^2 + qx - 1)
Re: 101 鳳新高中
這樣假設,四根全為實數,而原題是"至少有一個實根"而已
換句話說,若這樣假設,算出來之 "a^2 + b^2 的範圍" 會比用原題條件算出來的來得小
因為限制變大了
換句話說,若這樣假設,算出來之 "a^2 + b^2 的範圍" 會比用原題條件算出來的來得小
因為限制變大了
Re: 101 鳳新高中
第 4 題
cos∠A = 11/16,sin∠A = (3/16)√15
令 AD = x,AE = y
△ADE = (1/2)xy * (3/16)√15 = [(3/32)√15]xy
△ABC 內接圓半徑 = (√15)/6
△ADE = △ADI + △AEI = [(x + y)r]/2 = [(√15)/12](x + y)
[(√15)/12](x + y) = [(3/32)√15]xy
(9/8)xy = x + y ≧ 2√xy
xy ≧ (16/9)^2
等號成立於 x = y = 16/9
所求 = [(3/32)√15] * (16/9)^2 = (8/27)√15
cos∠A = 11/16,sin∠A = (3/16)√15
令 AD = x,AE = y
△ADE = (1/2)xy * (3/16)√15 = [(3/32)√15]xy
△ABC 內接圓半徑 = (√15)/6
△ADE = △ADI + △AEI = [(x + y)r]/2 = [(√15)/12](x + y)
[(√15)/12](x + y) = [(3/32)√15]xy
(9/8)xy = x + y ≧ 2√xy
xy ≧ (16/9)^2
等號成立於 x = y = 16/9
所求 = [(3/32)√15] * (16/9)^2 = (8/27)√15