102 科園國小第二次_資優

版主: thepiano

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

102 科園國小第二次_資優

文章 thepiano »

題目請參考附件,答案在前,題目在後

第 27 題答案應是 (D)

其中,第 27 題在第一次教師甄選已考過,當時給的答案是正確的,這次反而是錯的

另外,第 7、9、13、19、20、28、29、30 這 8 題題目有漏字
這樣的試卷不及格啊
附加檔案
102科園國小(二)_資優數學.doc
(729.5 KiB) 已下載 790 次

millie
文章: 57
註冊時間: 2013年 5月 10日, 22:48

Re: 102 科園國小第二次_資優

文章 millie »

請教鋼琴老師第2.5.11.15.16.18.23.26題

以下部分考卷題目不完整,可以解嗎?
第7.9.13.19.20.29.30題

再次感謝鋼琴老師的指導 :love:

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 102 科園國小第二次_資優

文章 thepiano »

第 2 題
A 到原點的距離 = |a|,B 到原點的距離 = |b|
|a| + |b| = 50
a 的最大值 50,a 的最小值 -50

第 5 題
a_1 + a_5 = a_2 + a_4 = 2a_3
a_1 + a_2 + a_3 + a_4 + a_5 = 5a_3 = 5
a_3 = 1
a_1a_3 + a_3a_5 = a_1 + a_5 = 2_a_3 = 2

第 11 題
f(3z) = f(9z/3) = (9z)^2 + 9z + 1 = 7
81z^2 + 9z + 6 = 0
z 值總和 = -9/81 = -1/9

第 15 題
設另一股長 a,斜邊長 b,b > a
則 a^2 + 113 = b^2
b^2 - a^2 = 113
(b + a)(b - a) = 113
b + a = 113
b - a = 1
b = 57

第 16 題
1 + 3 + 9 + ... + 3^99 = (3^100 - 1)/(3 - 1) = (3^100 - 1)/2
log(3^100) = 100log3 = 47.71
故 3^100 是 48 位數

又 log5 < 0.71 < log6
3^100 的最高位數字是 5
(3^100 - 1)/2 是 48 位數

第 18 題
B 走 5 分鐘的距離,A 走 4 + 5 = 9 分鐘
A 速:B 速 = 5:9
C 走 6 分鐘的距離,A 走 8 + 4 + 6 = 18 分鐘
A 速:C 速 = 6:18 = 1:3 = 5:15

B 速:C 速 = 9:15 = 3:5 = 6:10 = 12:20
C 走 12 分鐘的距離,B 走 20 分鐘
由於 C 比 B 晚 8 分鐘出發,故 C 出發後 12 分鐘追上 B

第 23 題
3927 = 3 * 7 * 11 * 17
957 = 3 * 11 * 29
1302 = 2 * 3 * 7 * 31
2262 = 2 * 3 * 13 * 29

第 26 題
2x + 1 = √111
(2x + 1)^2 = 111
4x^2 + 4x - 110 = 0
2x^2 + 2x - 55 = 0

2x^5 + 2x^4 - 53x^3 - 57x + 54 = (2x^2 + 2x - 55)(x^3 + x - 1) - 1 = -1
所求 = 1

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 102 科園國小第二次_資優

文章 thepiano »

您提到少字的題目,能做的僅以下 3 題

第 7 題
點數和為 13 的情形
(6,6,1):3 種
(6,5,2):6 種
(6,4,3):6 種
(5,5,3):3 種
(5,4,4):3 種
所求 = (3 + 6 + 6 + 3 + 3)/6^3

第 13 題
(-8,21),(2,1) 這兩點決定的直線是 2x + y = 5
2(2a) + (-a + 1) = 5
a = 4/3

第 30 題
見圖
綠色部份面積 = π/2 - 1
黃色部份面積
= 半徑為 2 的 1/4 圓 - 2 個半徑為 1 的半圓 + 綠色部份
= π - 2 * (π/2) + (π/2 - 1)
= π/2 - 1
附加檔案
20130628.jpg
20130628.jpg (20.31 KiB) 已瀏覽 15466 次

kyrandia
文章: 34
註冊時間: 2013年 7月 2日, 09:53

Re: 102 科園國小第二次_資優

文章 kyrandia »

第6題 此數列會唯一性嗎
例如:a_4=a_2+a_2+2*2=a_1+a_3+1*3
感恩

dream10
文章: 304
註冊時間: 2009年 2月 15日, 00:00

Re: 102 科園國小第二次_資優

文章 dream10 »

會吧~~
都一樣答案~~
可以試著代代看呀~~

kyrandia
文章: 34
註冊時間: 2013年 7月 2日, 09:53

Re: 102 科園國小第二次_資優

文章 kyrandia »

dream10 寫:會吧~~
都一樣答案~~
可以試著代代看呀~~
我試著作到a_12
但是越做越懷疑是否會唯一
因為當n越大 其分解也會越多
我也曾試著由kalman filter 作分解
但是做不出其唯一性的有利證據
請各位大大提供較可行的方法
感恩

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 102 科園國小第二次_資優

文章 thepiano »

在不疑處有疑,嗯,您是位好老師

小弟的證明如下,請參考附件
附加檔案
20130815.doc
(29 KiB) 已下載 643 次

kyrandia
文章: 34
註冊時間: 2013年 7月 2日, 09:53

Re: 102 科園國小第二次_資優

文章 kyrandia »

thepiano 寫:在不疑處有疑,嗯,您是位好老師

小弟的證明如下,請參考附件
正確無誤的証明 感謝大大的作法...

linvuctoria
文章: 10
註冊時間: 2014年 11月 23日, 10:59

Re: 102 科園國小第二次_資優

文章 linvuctoria »

老師請問
第 4題它們共有數列的公差是6
共有數列由13.19........到 1999
而1999為第333項
為何答案卻是332呢
請問何處思考有誤.....謝謝

回覆文章

回到「國小教甄數學科問題交流及討論區」